Copied to
clipboard

?

G = C42.90D10order 320 = 26·5

90th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.90D10, C10.482- (1+4), C10.922+ (1+4), (C2×C20)⋊5Q8, C20⋊Q811C2, C202Q86C2, (C2×C4)⋊4Dic10, C20.78(C2×Q8), C4⋊C4.268D10, (C4×C20).7C22, C20.6Q84C2, (C2×C10).63C24, C22⋊C4.91D10, C4.Dic1011C2, C4.34(C2×Dic10), C2.6(D48D10), C10.11(C22×Q8), (C2×C20).142C23, C42⋊C2.13D5, (C22×C4).187D10, C4⋊Dic5.32C22, C22.7(C2×Dic10), C22.96(C23×D5), (C2×Dic5).22C23, (C4×Dic5).76C22, C2.13(C22×Dic10), C10.D4.2C22, C23.151(C22×D5), C2.7(D4.10D10), C23.D5.92C22, (C22×C20).223C22, (C22×C10).133C23, Dic5.14D4.1C2, C52(C23.41C23), (C2×Dic10).25C22, C23.21D10.23C2, (C22×Dic5).85C22, (C2×C10).13(C2×Q8), (C2×C4⋊Dic5).45C2, (C5×C4⋊C4).304C22, (C2×C4).148(C22×D5), (C5×C42⋊C2).14C2, (C5×C22⋊C4).99C22, SmallGroup(320,1191)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.90D10
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4⋊Dic5 — C42.90D10
C5C2×C10 — C42.90D10

Subgroups: 638 in 206 conjugacy classes, 111 normal (29 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×12], C22, C22 [×2], C22 [×2], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×10], Q8 [×4], C23, C10 [×3], C10 [×2], C42 [×2], C42 [×2], C22⋊C4 [×2], C22⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×18], C22×C4, C22×C4 [×2], C2×Q8 [×4], Dic5 [×8], C20 [×4], C20 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C42⋊C2, C42⋊C2, C22⋊Q8 [×4], C42.C2 [×4], C4⋊Q8 [×4], Dic10 [×4], C2×Dic5 [×8], C2×Dic5 [×2], C2×C20 [×2], C2×C20 [×8], C22×C10, C23.41C23, C4×Dic5 [×2], C10.D4 [×8], C4⋊Dic5 [×2], C4⋊Dic5 [×8], C23.D5 [×2], C4×C20 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10 [×4], C22×Dic5 [×2], C22×C20, C202Q8 [×2], C20.6Q8 [×2], Dic5.14D4 [×4], C20⋊Q8 [×2], C4.Dic10 [×2], C2×C4⋊Dic5, C23.21D10, C5×C42⋊C2, C42.90D10

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C24, D10 [×7], C22×Q8, 2+ (1+4), 2- (1+4), Dic10 [×4], C22×D5 [×7], C23.41C23, C2×Dic10 [×6], C23×D5, C22×Dic10, D48D10, D4.10D10, C42.90D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 103 16 88)(2 109 17 84)(3 105 18 90)(4 101 19 86)(5 107 20 82)(6 95 62 130)(7 91 63 126)(8 97 64 122)(9 93 65 128)(10 99 61 124)(11 83 77 108)(12 89 78 104)(13 85 79 110)(14 81 80 106)(15 87 76 102)(21 94 29 129)(22 100 30 125)(23 96 26 121)(24 92 27 127)(25 98 28 123)(31 114 39 149)(32 120 40 145)(33 116 36 141)(34 112 37 147)(35 118 38 143)(41 157 56 138)(42 153 57 134)(43 159 58 140)(44 155 59 136)(45 151 60 132)(46 152 51 133)(47 158 52 139)(48 154 53 135)(49 160 54 131)(50 156 55 137)(66 111 75 146)(67 117 71 142)(68 113 72 148)(69 119 73 144)(70 115 74 150)
(1 46 77 41)(2 47 78 42)(3 48 79 43)(4 49 80 44)(5 50 76 45)(6 70 22 32)(7 66 23 33)(8 67 24 34)(9 68 25 35)(10 69 21 31)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(26 36 63 75)(27 37 64 71)(28 38 65 72)(29 39 61 73)(30 40 62 74)(81 136 86 131)(82 137 87 132)(83 138 88 133)(84 139 89 134)(85 140 90 135)(91 111 96 116)(92 112 97 117)(93 113 98 118)(94 114 99 119)(95 115 100 120)(101 160 106 155)(102 151 107 156)(103 152 108 157)(104 153 109 158)(105 154 110 159)(121 141 126 146)(122 142 127 147)(123 143 128 148)(124 144 129 149)(125 145 130 150)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 26 11 7)(2 30 12 6)(3 29 13 10)(4 28 14 9)(5 27 15 8)(16 23 77 63)(17 22 78 62)(18 21 79 61)(19 25 80 65)(20 24 76 64)(31 48 73 58)(32 47 74 57)(33 46 75 56)(34 50 71 60)(35 49 72 59)(36 51 66 41)(37 55 67 45)(38 54 68 44)(39 53 69 43)(40 52 70 42)(81 128 101 98)(82 127 102 97)(83 126 103 96)(84 125 104 95)(85 124 105 94)(86 123 106 93)(87 122 107 92)(88 121 108 91)(89 130 109 100)(90 129 110 99)(111 138 141 152)(112 137 142 151)(113 136 143 160)(114 135 144 159)(115 134 145 158)(116 133 146 157)(117 132 147 156)(118 131 148 155)(119 140 149 154)(120 139 150 153)

G:=sub<Sym(160)| (1,103,16,88)(2,109,17,84)(3,105,18,90)(4,101,19,86)(5,107,20,82)(6,95,62,130)(7,91,63,126)(8,97,64,122)(9,93,65,128)(10,99,61,124)(11,83,77,108)(12,89,78,104)(13,85,79,110)(14,81,80,106)(15,87,76,102)(21,94,29,129)(22,100,30,125)(23,96,26,121)(24,92,27,127)(25,98,28,123)(31,114,39,149)(32,120,40,145)(33,116,36,141)(34,112,37,147)(35,118,38,143)(41,157,56,138)(42,153,57,134)(43,159,58,140)(44,155,59,136)(45,151,60,132)(46,152,51,133)(47,158,52,139)(48,154,53,135)(49,160,54,131)(50,156,55,137)(66,111,75,146)(67,117,71,142)(68,113,72,148)(69,119,73,144)(70,115,74,150), (1,46,77,41)(2,47,78,42)(3,48,79,43)(4,49,80,44)(5,50,76,45)(6,70,22,32)(7,66,23,33)(8,67,24,34)(9,68,25,35)(10,69,21,31)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(26,36,63,75)(27,37,64,71)(28,38,65,72)(29,39,61,73)(30,40,62,74)(81,136,86,131)(82,137,87,132)(83,138,88,133)(84,139,89,134)(85,140,90,135)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(101,160,106,155)(102,151,107,156)(103,152,108,157)(104,153,109,158)(105,154,110,159)(121,141,126,146)(122,142,127,147)(123,143,128,148)(124,144,129,149)(125,145,130,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,26,11,7)(2,30,12,6)(3,29,13,10)(4,28,14,9)(5,27,15,8)(16,23,77,63)(17,22,78,62)(18,21,79,61)(19,25,80,65)(20,24,76,64)(31,48,73,58)(32,47,74,57)(33,46,75,56)(34,50,71,60)(35,49,72,59)(36,51,66,41)(37,55,67,45)(38,54,68,44)(39,53,69,43)(40,52,70,42)(81,128,101,98)(82,127,102,97)(83,126,103,96)(84,125,104,95)(85,124,105,94)(86,123,106,93)(87,122,107,92)(88,121,108,91)(89,130,109,100)(90,129,110,99)(111,138,141,152)(112,137,142,151)(113,136,143,160)(114,135,144,159)(115,134,145,158)(116,133,146,157)(117,132,147,156)(118,131,148,155)(119,140,149,154)(120,139,150,153)>;

G:=Group( (1,103,16,88)(2,109,17,84)(3,105,18,90)(4,101,19,86)(5,107,20,82)(6,95,62,130)(7,91,63,126)(8,97,64,122)(9,93,65,128)(10,99,61,124)(11,83,77,108)(12,89,78,104)(13,85,79,110)(14,81,80,106)(15,87,76,102)(21,94,29,129)(22,100,30,125)(23,96,26,121)(24,92,27,127)(25,98,28,123)(31,114,39,149)(32,120,40,145)(33,116,36,141)(34,112,37,147)(35,118,38,143)(41,157,56,138)(42,153,57,134)(43,159,58,140)(44,155,59,136)(45,151,60,132)(46,152,51,133)(47,158,52,139)(48,154,53,135)(49,160,54,131)(50,156,55,137)(66,111,75,146)(67,117,71,142)(68,113,72,148)(69,119,73,144)(70,115,74,150), (1,46,77,41)(2,47,78,42)(3,48,79,43)(4,49,80,44)(5,50,76,45)(6,70,22,32)(7,66,23,33)(8,67,24,34)(9,68,25,35)(10,69,21,31)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(26,36,63,75)(27,37,64,71)(28,38,65,72)(29,39,61,73)(30,40,62,74)(81,136,86,131)(82,137,87,132)(83,138,88,133)(84,139,89,134)(85,140,90,135)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(101,160,106,155)(102,151,107,156)(103,152,108,157)(104,153,109,158)(105,154,110,159)(121,141,126,146)(122,142,127,147)(123,143,128,148)(124,144,129,149)(125,145,130,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,26,11,7)(2,30,12,6)(3,29,13,10)(4,28,14,9)(5,27,15,8)(16,23,77,63)(17,22,78,62)(18,21,79,61)(19,25,80,65)(20,24,76,64)(31,48,73,58)(32,47,74,57)(33,46,75,56)(34,50,71,60)(35,49,72,59)(36,51,66,41)(37,55,67,45)(38,54,68,44)(39,53,69,43)(40,52,70,42)(81,128,101,98)(82,127,102,97)(83,126,103,96)(84,125,104,95)(85,124,105,94)(86,123,106,93)(87,122,107,92)(88,121,108,91)(89,130,109,100)(90,129,110,99)(111,138,141,152)(112,137,142,151)(113,136,143,160)(114,135,144,159)(115,134,145,158)(116,133,146,157)(117,132,147,156)(118,131,148,155)(119,140,149,154)(120,139,150,153) );

G=PermutationGroup([(1,103,16,88),(2,109,17,84),(3,105,18,90),(4,101,19,86),(5,107,20,82),(6,95,62,130),(7,91,63,126),(8,97,64,122),(9,93,65,128),(10,99,61,124),(11,83,77,108),(12,89,78,104),(13,85,79,110),(14,81,80,106),(15,87,76,102),(21,94,29,129),(22,100,30,125),(23,96,26,121),(24,92,27,127),(25,98,28,123),(31,114,39,149),(32,120,40,145),(33,116,36,141),(34,112,37,147),(35,118,38,143),(41,157,56,138),(42,153,57,134),(43,159,58,140),(44,155,59,136),(45,151,60,132),(46,152,51,133),(47,158,52,139),(48,154,53,135),(49,160,54,131),(50,156,55,137),(66,111,75,146),(67,117,71,142),(68,113,72,148),(69,119,73,144),(70,115,74,150)], [(1,46,77,41),(2,47,78,42),(3,48,79,43),(4,49,80,44),(5,50,76,45),(6,70,22,32),(7,66,23,33),(8,67,24,34),(9,68,25,35),(10,69,21,31),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(26,36,63,75),(27,37,64,71),(28,38,65,72),(29,39,61,73),(30,40,62,74),(81,136,86,131),(82,137,87,132),(83,138,88,133),(84,139,89,134),(85,140,90,135),(91,111,96,116),(92,112,97,117),(93,113,98,118),(94,114,99,119),(95,115,100,120),(101,160,106,155),(102,151,107,156),(103,152,108,157),(104,153,109,158),(105,154,110,159),(121,141,126,146),(122,142,127,147),(123,143,128,148),(124,144,129,149),(125,145,130,150)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,26,11,7),(2,30,12,6),(3,29,13,10),(4,28,14,9),(5,27,15,8),(16,23,77,63),(17,22,78,62),(18,21,79,61),(19,25,80,65),(20,24,76,64),(31,48,73,58),(32,47,74,57),(33,46,75,56),(34,50,71,60),(35,49,72,59),(36,51,66,41),(37,55,67,45),(38,54,68,44),(39,53,69,43),(40,52,70,42),(81,128,101,98),(82,127,102,97),(83,126,103,96),(84,125,104,95),(85,124,105,94),(86,123,106,93),(87,122,107,92),(88,121,108,91),(89,130,109,100),(90,129,110,99),(111,138,141,152),(112,137,142,151),(113,136,143,160),(114,135,144,159),(115,134,145,158),(116,133,146,157),(117,132,147,156),(118,131,148,155),(119,140,149,154),(120,139,150,153)])

Matrix representation G ⊆ GL6(𝔽41)

010000
4000000
0000400
0000040
0040000
0004000
,
100000
010000
0021300
00283900
0000213
00002839
,
4000000
0400000
00353500
0064000
000066
0000351
,
090000
900000
00371400
0031400
00003714
0000314

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,40,0,0,0,0,0,0,40,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,28,0,0,0,0,13,39,0,0,0,0,0,0,2,28,0,0,0,0,13,39],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,6,0,0,0,0,35,40,0,0,0,0,0,0,6,35,0,0,0,0,6,1],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,37,31,0,0,0,0,14,4,0,0,0,0,0,0,37,31,0,0,0,0,14,4] >;

62 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I···4P5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order122222444444444···45510···101010101020···2020···20
size1111222222444420···20222···244442···24···4

62 irreducible representations

dim11111111122222224444
type+++++++++-+++++-+-+-
imageC1C2C2C2C2C2C2C2C2Q8D5D10D10D10D10Dic102+ (1+4)2- (1+4)D48D10D4.10D10
kernelC42.90D10C202Q8C20.6Q8Dic5.14D4C20⋊Q8C4.Dic10C2×C4⋊Dic5C23.21D10C5×C42⋊C2C2×C20C42⋊C2C42C22⋊C4C4⋊C4C22×C4C2×C4C10C10C2C2
# reps122422111424442161144

In GAP, Magma, Sage, TeX

C_4^2._{90}D_{10}
% in TeX

G:=Group("C4^2.90D10");
// GroupNames label

G:=SmallGroup(320,1191);
// by ID

G=gap.SmallGroup(320,1191);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,758,184,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽